
Leptin is primarily produced by adipocytes. Its
plasma concentration varies in proportion to fat
mass. Binding of leptin to its receptors in the hypo-
thalamus and brain stem orchestrates the activity of
neuroendocrine ensembles that inhibit food intake
and increase energy expenditure. Loss of function
mutations of the leptin- or leptin receptor gene are
associated with obesity and insulin resistance in
rodents. Leptin deficient humans are also morbidly
obese, which indicates that leptin plays a critical role
in the control of energy balance in man as well as in
rodents. Circulating leptin levels are high in most
obese humans and apparently do not act to reduce
adipose stores to their ‘normal’ size. Emerging evi-
dence indicates that high fat feeding induces leptin
resistance in rodents. Clinical evidence supports the
notion that obese humans are leptin resistant as well.
Leptin resistance may not only explain the pro-
pensity of people to grow obese, it may also underlie
various metabolic features of obesity. This paper
reviews current perceptions of the causes and conse-
quences of leptin resistance in rodents and man.  
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Leptin is primarily produced by adipocytes and it acts
in the brain to control energy balance and fuel flux
via neuronal circuits in hypothalamic and brain stem
nuclei. Plasma leptin levels vary in proportion to fat
mass in rodents and humans, where large adipose
stores are associated with high circulating leptin con-
centrations. Binding to leptin receptors in the hypo-
thalamus orchestrates the activity of a myriad of
neurons that are critically involved in the regulation
of food intake and metabolism (1, 2). An increase of
the plasma leptin concentration inhibits food intake
and stimulates energy expenditure so as to curtail
further growth of adipose stores. Conversely, reduc-
tion of circulating leptin levels in case of caloric
restriction and loss of adipose tissue unleashes
appetite and restrains energy expenditure to prevent
further weight loss. Genetically engineered, leptin
deficient ob/ob mice are hyperphagic, insulin resis-
tant and extremely obese (3, 4). They also have low
energy expenditure and body temperature. Loss of
function mutations of the leptin receptor are asso-

ciated with a similar phenotype in mice and rats (5,
6). In analogy, leptin deficient humans are marked by
morbid obesity that manifests in childhood, which
illustrates the pivotal role of leptin in the control of
energy balance in man (7). However, mutations of the
leptin gene are very rare in humans. Indeed, the
majority of obese individuals has high circulating
leptin levels, as expected in light of their large adi-
pose mass (8, 9). Why do high plasma leptin levels
not suppress appetite and increase energy expenditure
so as to reduce energy stores to ‘normal’ in obese
humans? Probably because obese humans are leptin
resistant. This paper delineates the causes and conse-
quences of leptin resistance in rodents and humans.

Mechanism of action
The leptin receptor (LEPR) is a single membrane
spanning receptor that belongs to a family of class I
cytokine receptors, including interleukin 6 (IL-6),
leukemia inhibitory factor (LIF) and granulocyte-
colony stimulating factor (GCSF) (10). Six splice
variants (‘a’ to ‘f’), that differ in their intracellular
tails, but share identical extracellular binding
domains, have been identified to date. Only the ‘long
isoform’, LEPRb, has intracellular motifs necessary
for activation of the Janus Kinase (JAK) / Signal
Transducer and Activator of Transcription (STAT)
signal transduction pathway (11). Binding of leptin to
the LEPRb leads to autophosphorylation of JAK 1
and 2 and subsequent recruitment of STAT3. Tyrosine
phosphorylated STAT3 transactivates target genes by
binding to specific promoter elements (12). Activation
of LEPRb also promotes expression of suppressor of
cytokine signalling 3 (SOCS-3), which is a negative
regulator of leptin signalling and probably serves to
switch off or dampen leptin signal transduction (13).

The LEPRb is abundant in various hypothalamic nuclei
that are involved in the control of food intake and
energy balance, including the arcuate, dorsomedial,
ventromedial and lateral nuclei (14). Leptin receptors
have also been identified in various other brain areas,
including the nucleus of the solitary tract (15) and the
caudal brain stem (16, 17). In these nuclei, leptin
regulates the transcription and release of a host of
distinct neuropeptides that can be categorized as ana-
bolic or catabolic. Anabolic neuropeptides include neu-
ropeptide Y (NPY), Agouti related peptide (AgRP),
orexins (ORX) and melanin concentrating hormone
(MCH). Genes encoding proopiomelanocortin (POMC),
cocaine and amphetamine regulated transcript (CART),
and corticotrophin releasing hormone (CRH) are major
targets of leptin driving catabolic pathways (18).
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The blood-brain-barrier (BBB) protects the brain
against entry of toxins and coordinates the transit of
nutrients and hormones from blood to brain (and vice
versa). Various periventricular brain areas, including
the median eminence and area postrema, lack a func-
tional BBB (19). The arcuate nucleus, a major target
of leptin, lies adjacent to the median eminence. This
probably allows leptin to access the arcuate freely via
diffusion through the median eminence (20). Transit
of leptin from blood to other brain areas requires an
active and saturable transport process, most likely
mediated by short isoforms of the leptin receptor
(LEPRa) that are abundant in the chorioid plexus and
brain microvasculature (14, 20). 

Leptin enters the brain to activate catabolic neural
circuits and inhibit anabolic pathways. Thus, when
circulating leptin levels are high because fat stores
are full, POMC neurons in the arcuate are active and
adjacent NPY neurons are silent. These neurons pro-
ject to the paraventricular nucleus (PVN) and various
other hypothalamic nuclei that regulate neuroendo-
crine ensembles involved in the control of food
intake and fuel flux and energy expenditure. In par-
ticular, pituitary hormone release and activity of the
autonomic nervous system are controlled by hypo-
thalamic leptin signalling (21, 22). Simultaneously,
leptin modulates neuronal activity in the brainstem
(23). Via these various neuronal circuits, leptin
inhibits food intake, increases energy expenditure and
reinforces insulin action.

Metabolic and behavioural effects of leptin
Leptin deficient ob/ob animals are hyperphagic,
insulin resistant and morbidly obese. Their metabolic
rate and core body temperature are low. Leptin
replacement restores all of these metabolic anomalies
(4, 24, 25). Also, ob/ob mice are hypotensive despite
their obesity (26), and leptin infusion increases arterial
blood pressure and heart rate in rats through activation
of lumbar and renal sympathetic nerves (27, 28).
A myriad of data indicates that the effects of leptin on
food intake and body weight are largely mediated by
its impact on arcuate nucleus NPY and POMC neu-
rons. NPY potently stimulates feeding and reduces
energy expenditure, whereas α- and β-melanocyte
stimulating hormones (α-/β- MSH), split products of
the POMC polypeptide precursor, inhibit food intake
and increase metabolic rate and blood pressure (18, 29,
30). Leptin suppresses NPY neuronal activity (31, 32),
while it promotes POMC expression (33), thereby
reducing body weight and increasing arterial pressure.
The JAK/STAT cascade alluded to above is respon-
sible for intracellular translation of leptins impact on
NPY and POMC gene expression.

Since in vivo measures of insulin sensitivity correlate
strongly with total and regional fat mass in animals
and humans (34), it is tempting to attribute insulin
resistance in ob/ob mice and leptin deficient humans
to their obese phenotype. However, there is evidence
to suggest that leptin impacts on glucose metabolism
through mechanistic routes that are independent of its

effect on food intake and body weight. Indeed, intra-
peritoneal administration of leptin acutely reduces
glycemia and insulinemia and restores glucose toler-
ance without affecting body weight in ob/ob mice.
Injection of a low dose of leptin into the ventromedial
hypothalamus of lean rats promotes basal (insulin
independent) glucose uptake in various tissues, sug-
gesting that the central nervous system is a critical
target of leptin in the control of glucose metabolism
(35, 36). The neural routes that mediate leptins
effects on food intake and energy expenditure may
also modulate insulin action. Indeed, intracerebroven-
tricular (i.c.v.) administration of NPY induces insulin
resistance of the liver (37) and activation melano-
cortin receptors by melanotan II, an analogue of α-
MSH, reinforces insulin action in muscle and adipose
tissue (38).
Importantly, leptin and POMC appear to have similar
and clinically very relevant effects on metabolism in
man. Indeed, loss of function mutations of the leptin
and POMC genes are associated with hyperphagia,
severe obesity and insulin resistance in humans (39,
40). Also, mutations of melanocortin receptors, medi-
ating the effects of α- and β- MSH on body weight,
are the commonest form of monogenetic obesity in
humans, where mutations leading to complete loss of
function are associated with a more severe phenotype
(41). Furthermore, leptin reverses insulin resistance
in patients with congenital lipodystrophy, a disease
that is marked by low circulating leptin concentra-
tions (42-44), indicating that it favourably affects
insulin action in humans as well as in rodents.
These data clearly show that leptin has an important
role in the regulation of feeding, energy expenditure,
body weight and insulin action in rodents and man.
However, circulating leptin levels are increased, and
apparently fail to curtail the growth of adipose stores
in obese humans (8, 9). How can this be explained?
Emerging evidence indicates that high fat feeding
induces leptin resistance in rodents and clinical data
suggest that obese humans are also leptin resistant.

Leptin resistance
High fat fed murine models of obesity are widely
accepted models of common human obesity, because
high fat feeding in rodents recapitulates the metabolic
and endocrine features of obesity in man. The circu-
lating leptin concentration is high in diet induced
obese (DIO) rats and mice (8, 45). Apparently, leptin
does not curtail the progression of obesity in these
animals, which suggests that it has less biological
effect on food intake and metabolism. At least 3
mechanisms may be responsible for leptin resistance:
1. impaired transit of leptin across the BBB;
2. reduced number of leptin receptors in critical target

sites, or
3. post-receptor signal transduction defects.
Initial experiments revealed that high fat feeding
almost completely blocks the ability of plasma leptin
to activate STAT-3 in hypothalamic nuclei (46).
Accordingly, the hypophagic response to peripheral
leptin administration is blunted in high fat fed mice
(47). Subsequent studies show that leptin transport
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across the BBB is reduced in high fat fed rats,
although the mechanism remains unclear because
LEPRa gene expression is normal in cerebral micro-
vessels (48, 49). There is evidence to suggest that
triglycerides may somehow be involved (50).
Notably, caloric restriction restores leptin transit
across the BBB to normal in DIO, indicating that the
defect is reversible (48).
The hypophagic response to i.c.v. leptin administra-
tion in rats is also clearly blunted in DIO rats (51),
which indicates that high fat feeding impairs leptin
signal transduction at the level of the receptor or
beyond. Indeed, the LEPRb receptor number is
reduced in the hypothalamus of rats that are prone to
grow obese on a high fat diet even before they gain
weight (52). Moreover, ex vivo binding of leptin is
clearly impaired in the hypothalamus of DIO rats
(53), and the number of LEPRb receptors is also
reduced in the hypothalamus of DIO mice (54).
Caloric restriction reverses deficits of LEPRb gene
expression and protein in DIO rats (55). Other studies
reveal that leptin resistance of aging is also associ-
ated with reduced hypothalamic LEPRb protein (56).
These data strongly suggest that LEPRb number is
reduced in high fat fed leptin resistant animals and
that the defect can be restored by caloric restriction.
There is also data to indicate that high fat feeding
compromises post-receptor cascades involved in
leptin signal transduction. SOCS-3, which is induced
by activation of the LEPRb, blocks leptin-induced
tyrosine phosphorylation of JAK2 (57), and thereby
partakes in an intracellular negative feedback loop to
curtail leptin signal transduction (13). Neural cell-

specific deletion of SOCS-3 enhances hypothalamic
STAT-3 phosphorylation in response to LEPRb acti-
vation. Moreover, neuron-specific SOCS-3 deficient
mice are resistant to high fat diet induced obesity, and
leptin inhibits feeding to a greater extent in these
animals (58). Conversely, in high fat fed rodents,
SOCS-3 expression is significantly increased, and
leptin-induced STAT-3 phosphorylation is completely
blocked in the arcuate nucleus of the hypothalamus,
but not in other brain areas (59). The pathogenic
mechanism explaining this phenomenon remains to
be determined. However, region specific up-regula-
tion of SOCS-3 expression in the arcuate nucleus
most likely contributes to leptin resistance in high fat
fed rodents. 
Interestingly, selective leptin resistance may explain
the development of hypertension in response to high
fat feeding. Leptin elevates blood pressure by acti-
vating sympathetic outflow to the kidneys (60). Lep-
tins capacity to stimulate renal sympathetic nerve
activity and elevate blood pressure is fully preserved
in high fat fed rats, despite pronounced leptin resis-
tance of feeding and body weight responses (61).
This is probably because leptins impact on sympa-
thetic outflow to the kidney is mediated by the dor-
somedial (DMH) and ventromedial hypothalamus
(VMH) (62), whereas it effects on energy balance are
primarily orchestrated by arcuate neurons. As noted
above, high fat feeding up-regulates SOCS-3 in the
arcuate, but not in other brain areas, including the
DMH and VMH (59). Thus, hyperleptinemia, induced
by leptin resistance of arcuate neurons and conse-
quent gain of adipose mass, unabatedly stimulates
renal sympathetic outflow to increase blood pressure
in diet induced obese rats (61).
What is the evidence to support the presence of leptin
resistance in obese humans? First of all, hyperlep-
tinemia apparently does not curtail adipose tissue
growth in the majority of obese individuals (8, 9).
Secondly, exogenous leptin administration has vir-
tually no effect on body weight in obese humans (63,
64). Thirdly, the cerebrospinal fluid / serum leptin
concentration ratio is decreased in human obesity,
suggesting that leptin transit across the BBB is
impaired in obese individuals (65). Finally, the fact
that renal norepinephrine spillover (a proximate mea-
sure of sympathetic outflow) is increased in obese
humans, whereas measures of sympathetic activity in
other tissues are reduced (66), is consistent with the
presence of regional leptin resistance.

Clinical implications
As a direct corollary of leptin resistance, NPY
expression is increased and POMC expression is
reduced in the arcuate nucleus of obese, high fat fed
animals (67-69). Obviously, these neuropeptides are
responsible for the behavioural and metabolic ramifi-
cations of leptin resistance. This notion opens new
alleys for the treatment of obesity. Indeed, NPY
receptor antagonists (70) and melanocortin receptor
agonists (71) are currently scrutinized for their poten-
tial as weight reducing and insulin sensitizing agents.
Other possibilities include the use of peptides other
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Figure 1. The concept of selective leptin resistance. High fat
feeding leads to site specific disruption of leptin signal trans-
duction cascades in the arcuate nucleus of the hypothalamus
(ARC). Therefore, leptin does not properly inhibit food intake
and fails to increase energy expenditure. Moreover, leptin
resistance in the arcuate hampers systemic insulin action. Adi-
pose stores grow and produce more leptin. Leptin signal trans-
duction in the ventromedial (VMH) and dorsomedial (DMH)
nuclei of the hypothalamus remains unabated. Through these
nuclei, leptin activates renal sympathetic outflow and elevates
blood pressure. Thus, selective leptin resistance can explain
many of the metabolic features of human obesity.



than leptin that favourably modify NPY and POMC
expression levels (72, 73) or drugs that redirect post-
receptor leptin signal transduction (74).

Conclusion
Leptin plays an important role in the control of
energy balance and insulin action in humans, as evi-
denced by the fact that leptin deficiency leads to
morbid obesity and insulin resistance in childhood.
Accordingly, leptin acts in the brain to inhibit food
intake, increase energy expenditure and reinforce
insulin action. Leptin deficiency is a very rare con-
dition in humans. In contrast, many obese humans
have a high circulating leptin concentration, which
apparently does not prevent the growth of their adi-
pose tissue, suggesting that leptin action is impaired.
High fat feeding in rodents, which recapitulates many
of the metabolic features of human obesity, unequivo-
cally leads to (site specific) leptin resistance. Various
clues suggest that obese humans are also leptin resis-
tant. Clarification of the downstream neuroendocrine
corollaries of leptin resistance may guide the de-
velopment of novel strategies for the treatment of
obesity.
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Samenvatting

Leptineresistentie. Pijl H. Ned Tijdschr Klin Chem Labgeneesk
2007; 32: 3-8.
Leptine wordt voornamelijk door adipocyten gemaakt. De

plasmaconcentratie van leptine stijgt met toenemen van de
vetmassa. Binding van leptine aan receptoren in de hypo-
thalamus en hersenstam coördineert de activiteit van neuronale
circuits die de voedselinname remmen en het energieverbruik
stimuleren. Leptinedeficiëntie en inactiverende mutaties van
de leptinereceptor leiden tot ernstig overgewicht en insuline-
resistentie bij knaagdieren. Leptinedeficiënte mensen zijn ook
morbide adipeus, hetgeen aangeeft dat leptine bij mensen, net
als bij knaagdieren, een buitengewoon belangrijke rol speelt in
de regulatie van de energiebalans. De plasmaleptineconcen-
tratie is hoog bij de meeste adipeuze patiënten. Kennelijk
beïnvloeden die hoge concentraties de energiebalans niet
zodanig dat de vetreserve wordt teruggebracht tot ‘normaal’.
Er is veel bewijs dat hoogvette voeding leidt tot leptine
resistentie bij knaagdieren. Er zijn ook aanwijzingen dat
adipeuze mensen leptineresistent zijn. Leptineresistentie kan
niet alleen de ongeremde groei van vetreserves verklaren, het
zou ook ten grondslag kunnen liggen aan een aantal metabole
afwijkingen die met adipositas zijn geassocieerd. Dit over-
zichtsartikel beschrijft de huidige inzichten in de pathogenese
en gevolgen van leptinedeficiëntie in knaagdieren en mensen.

Trefwoorden: leptine; adipocyten; insulineresistentie; obesitas
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Adiponectin, role in insulin resistance, atherosclerosis and carcinogenesis

I.M. JAZET and A.E. MEINDERS

Adiponectin is one of the many adipokines secreted
by adipocytes. Several isoforms are detectable in the
circulation, the HMW isoform is supposed to be the
most active one. Two adiponectin receptors have
been cloned: Adipo R1 and Adipo R2 with a different
distribution pattern. Stimulation of these receptors is
followed by activation of intracellular signaling mole-
cules like AMP kinase and PPARαα. Plasma
adiponectin levels are lower in obesity and in men
compared to women and are influenced by weight
reduction, dietary intake and drugs.
Adiponectin might be the important signal protein
from the adipocyte to the vascular wall in the patho-
genesis of atherosclerosis. Adiponectin inhibits sev-
eral processes, which play a role in atherogenesis like
smooth muscle cell proliferation and foam cell for-
mation. Adiponectin is positively related to HDL
levels. Adiponectin is inversely related to several
obesity-associated cancers. Adiponectin inhibits car-
cinogenesis directly via stimulation of apoptosis and

indirectly via inhibition of growth factors like insulin
and ILGF-1 and the inhibition of angiogenesis.
Adiponectin has anti-diabetic properties. It decreases
hepatic glucose output and increases muscular fatty
acid oxidation and glucose uptake. Measuring
plasma adiponectin levels may be worthwhile in the
future for detecting subjects with an increased risk
for the development of cancer, atherosclerosis and
type 2 diabetes. Mechanisms to increase plasma
levels of adiponectin and its action via Adipo R1 and
Adipo R2 may lead to new therapeutic interventions.

Keywords: adiponectin; adiponectin receptor; obesity;
atherogenesis; cancer; diabetes

Adipose tissue can be considered as an organ with
various functions (1). In the last decennium it became
evident that the adipocyte is secreting several different
proteins, also referred to as adipokines (figure 1), that
play an important role in cardiovascular integrity, meta-
bolism, inflammation and the development of cancer. 
From epidemiological and clinical studies it has
become clear that obesity is related to cardiovascular
disease, disturbances in carbohydrate and lipid meta-
bolism and several different forms of cancer. This
relation is especially true between these diseases and
the amount of visceral fat. Visceral fat cells are meta-
bolically the most productive ones, compared with
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