results. Performing a LightCycler assay in a closed
system eliminates post-amplification processing. This
considerable reduction in the number of manipula-
tions reduces the risk of contamination. The use of
the LightCycler clearly reduced analysis time (45
minutes vs. 1.5 days).

In conclusion real-time PCR followed by melting
curve analysis is a rapid, simple, accurate method for
genotyping the VKORC1 1173C>T polymorphism.
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Automated result interpretation in anemia testing using artificial neural networks

J. van de VEN, M.G. SCHOORL and P.C.M. BARTELS

Artificial neural networks (ANNSs) are non-linear sta-
tistical data processing tools based on the simulation
of groups of interconnected neurons, which work
analogously to biological neural nets. An ANN can be
trained for a particular task by repetitively adjusting
inter-neuronal connection weights so that the dis-
crepancies between output and true values are mini-
mized. ANNs can be applied in complicated
classification tasks, and show promise for application
in medical decision making (1,2). In our laboratory,
anemia test results ordered by general practitioners
are reported with classification codes referring to the
most probable cause of anemia. The coding is done
non-automated by a clinical chemist, is time intensive
and probably operator dependent. In this study, we
examined the abilities of two ANNs software pack-
ages to learn this particular task, in order to explore
the feasibility of automated interpretation of labora-
tory results.

Methods

Two software programs were used, both being imple-
mentations of a standard feed-forward back-propaga-
tion ANN model. Nets were created with one input
layer containing a number of neurons equaling the
number of input parameters, two hidden layers with
variable numbers of neurons, and one output neuron
signaling the likelihood of a particular classification.
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Dedicated ANNs were employed in parallel for the
classification codes: iron deficiency, thalassemia, in-
fection, blood loss, pregnancy, decreased erythro-
poiesis, and uncertain/unknown cause. The general
principle is shown in figure 1. Separate datasets were
used for training, for validation (detecting potential
overtraining) and for evaluation, and only contained
test results ordered by general practitioners. Data
were obtained from the LIS and a Sysmex XE-2100
hematology analyser.

The first program tested was NNclass, a freeware
MS-Excel implementation (3). Nets were defined
with randomly sized hidden layers. Input parameters
included: age, sex, ESR, zinc protoporphyrin (ZPP),
Hb, RBC, MCV, MCH, RDW-SD, neutrophilic gra-
nulocytes, immature reticulocytes fraction and reticu-
locytes. Missing input data were substituted by mean
values obtained from the training dataset. Training
was performed for 2000 cycles using 649 training
and 115 validating examples. ANNs with the lowest
training- and validation error rates were selected,
feeded with an evaluation dataset (n=170), and evalu-
ated for the subjective acceptability of their output.
The analytical performance was evaluated with a
separate dataset (n=431).

EasyNN-plus (4), a commercial stand-alone applica-
tion, was also tested. Hidden layer size was opti-
mized by the program prior to learning. Input
parameters were: age, sex, ESR, ZPP, Hb, RBC,
MCV, RDW-SD, platelets, granulocytes, lympho-
cytes, monocytes, IRF and reticulocytes. Missing
input data were substituted by median values
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Table 1. Analytical evaluation of trained ANNS. Freq: frequency of that classification category in the evaluation set. Sens: sensitivity,
Spec: specificity, PPV: positive predictive value, NPV: negative predictive value.

NNclass
Training : n=649

Evaluation : n=431

Freq Sens Spec
Iron deficiency 28.3% 0.84 0.90
Thalassemia 10.4% 0.58 0.96
Infection 5.8% 0.48 0.95
Blood loss 6.5% 0.64 0.97
Pregnancy 5.1% 0.50 0.99
Decreased erythropoiesis 1.9% 0.75 0.98
Uncertain/unknown 64.5% 0.90 0.66

EasyNN-plus

Training : n=1274
Evaluation : n=431

PPV NPV Sens Spec PPV NPV
0.78 0.93 0.74 0.95 0.86 0.90
0.63 0.95 0.56 0.98 0.81 0.95
0.36 0.97 0.60 0.95 0.44 0.97
0.58 0.98 0.61 0.96 0.49 0.97
0.75 0.97 0.68 0.98 0.63 0.98
0.35 1.00 0.75 0.97 0.35 1.00
0.84 0.78 0.90 0.68 0.84 0.79

obtained from the training dataset. Nets were trained
using 1274 training and 223 validating examples until
validation error increased (typically between 1000-
10,000 cycles). ANNs with the best sensitivity en
specificity were evaluated (n=431) for analytical per-
formance.

Results

Multiple (10-80) ANNs were trained per anemia clas-
sification code, and the best of each type were used
for analytical evaluation. Results are summarized in
Table 1. Selected ANNs generally had moderate sen-
sitivity (ranging 0.48-0.90) and good specificity
(>0.95). Although positive predictive values were
moderate (range 0.35-0.86), negative predictive
values were good (range 0.78-1.00). In overall, both
ANNSs programs gave comparable results. In addition
to the analytical evaluation, the ANNs created with
NNCclass were also evaluated for the acceptability of
their errors. Out of 170 anemia classifications gener-
ated by the selected ANNs, 36 (21%) deviated in one
or more ways from the human-made classification.
Of these deviations, only 6 (3.5% of total) were con-
sidered to be critical errors as subjectively judged by
an experienced clinical chemist.

Conclusions
An obvious approach for automation of classification
tasks would seem to be the use of flowcharts.

input layer

hidden layers

output neuron

classification

Figure 1. Simplified representation of dedicated ANNs for each
anemia class being used in parallel.
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Although flowcharts do have advantages such as
transparency, it is difficult to document the complex
and fuzzy manner of human decision-making. More-
over, results of flowcharts used in anemia classifica-
tion are often sub optimal (5). We therefore tried
ANNs as alternative approach. When employing
ANNE, it is essential to prevent overtraining which
will result in poor generalization power (6). By cross-
validation against a separate evaluation dataset we
demonstrate that selected ANNs could also classify
new cases that were not used in the training process.
Although both NNclass and EasyNN-plus produced
ANNs with equal analytical performance, the author
prefers EasyNN because of its operating speed.
Resulting ANNs combine moderate sensitivity with
high specificity, implicating that they are rather con-
servative in detecting anemia causes. This may well
be a desirable property when providing result inter-
pretation to general practitioners. The amount and
type of errors produced by the ANNs are acceptable.
We conclude that the use of ANNs in anemia classifi-
cation in a laboratory setting is feasible. Some issues,
however, need further investigation, for example long
term stability of analytical performance and the ques-
tion of how to implement ANNs in daily laboratory
routine.
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